

# Time-resolved photoluminescence spectroscopy of Si nanocrystals prepared by $SiO_x/SiO_2$ superlattices technique

Miroslav Kořínek

Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic *miroslavkorinek@gmail.com* 

### Introduction

- Si nanocrystals (Si-NCs) are promising material for application in optoelectronics [1], biophysics [2] and photovoltaics (the third generation solar cells [3]).
- It is generally accepted that the unique properties of Si-NCs result from

#### Results



# *Fig.1:* Time-integrated PL spectra of the investigated samples, excited

both the quantum confinement effect and presence of the surface states. The predominantly used matrix material for Si-NCs is  $SiO_2$  due to its high band gap and the well understood properties of the bulk  $Si/SiO_2$  interface [4].

The aim of this study is time-resolved photoluminescence spectroscopy of Si-NCs prepared by SiO<sub>x</sub>/SiO<sub>2</sub> superlattices technique for photovoltaic application.

#### Samples

- samples Da125H2 and Da125 fabricated by IMTEK (Freiburg)
- amorphous SiO<sub>x</sub>/SiO<sub>2</sub> superlattices prepared by reactive evaporation of SiO powders in oxygen atmosphere
  annealing at 1100 °C in N<sub>2</sub> for 1 hour
  sample Da125H2 additionally post-annealed in H<sub>2</sub> at 450 °C
  the high temperature annealing results



by a 325 nm cw He-Cd laser.

*Fig.2:* Dynamics of microsecond PL of the sample Da125H2.

Fig.3: Parameter au of stretchedexponential function vs the PL photon energy.

in phase separation  $SiO_x \rightarrow \frac{x}{2} SiO_2 + (1 - \frac{x}{2})Si$  [5] > 30 layers of ~ 3.5 nm nanocrystals



Two samples with well defined nanocrystal size, density and stoichiometry which differ in the surface quality.

#### **Experimental setup**



Fig.4: Parameter  $\beta$  of stretchedexponential function vs the PL photon energy.

#### **Proposed explanation**

H<sub>2</sub> annealing = passivation of nonradiative defects at the NC/oxide interface (Si dangling-bond defect [6])
 PL intensity increase

- $\Rightarrow$  time constant au increase
- ► exciton migration (hopping) between different NCs [7]
  ⇒ stretched-exponential time decay (dispersion factor β depends on the spatial distribution of localized states)

#### Acknowledgement

I would like to thank my supervisor doc. František Trojánek and collegues P. Malý, B. Dzurňák and M. Kozák. I acknowledge the financial support of the EU 7th Framework Programme Silicon Nanodots for Solar Cell Tandem (NASCENT), and of the Charles University in Prague (projects GAUK 443911 and SVV-2011-263306).

#### References

[1] L. Pavesi: J. Phys.: Condens. Matter, 15, 1169 (2003).
 [2] A. Jane et al.: Trends in Biotechnology, 27, 230 (2009).
 [3] G. Conibeer et al.: Thin Solid Films, 516, 6748 (2008).
 [4] D. Hiller et al.: Physical Review B, 82, 195401-1 (2010).
 [5] M. Zacharias et al.: Applied Physics Letters, 80, 662 (2002).
 [6] A. R. Wilkinson et al.: Physical Review B, 68, 155302-1 (2003).
 [7] J. Heitmann et al.: Physical Review B, 69, 195309-2 (2004).

## http://physics.mff.cuni.cz/kchfo/ooe/